Metamath Proof Explorer


Theorem nfdm

Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypothesis nfrn.1 _ x A
Assertion nfdm _ x dom A

Proof

Step Hyp Ref Expression
1 nfrn.1 _ x A
2 df-dm dom A = y | z y A z
3 nfcv _ x y
4 nfcv _ x z
5 3 1 4 nfbr x y A z
6 5 nfex x z y A z
7 6 nfab _ x y | z y A z
8 2 7 nfcxfr _ x dom A