Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
nfeqd
Next ⟩
nfeld
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfeqd
Description:
Hypothesis builder for equality.
(Contributed by
Mario Carneiro
, 7-Oct-2016)
Ref
Expression
Hypotheses
nfeqd.1
⊢
φ
→
Ⅎ
_
x
A
nfeqd.2
⊢
φ
→
Ⅎ
_
x
B
Assertion
nfeqd
⊢
φ
→
Ⅎ
x
A
=
B
Proof
Step
Hyp
Ref
Expression
1
nfeqd.1
⊢
φ
→
Ⅎ
_
x
A
2
nfeqd.2
⊢
φ
→
Ⅎ
_
x
B
3
dfcleq
⊢
A
=
B
↔
∀
y
y
∈
A
↔
y
∈
B
4
nfv
⊢
Ⅎ
y
φ
5
df-nfc
⊢
Ⅎ
_
x
A
↔
∀
y
Ⅎ
x
y
∈
A
6
1
5
sylib
⊢
φ
→
∀
y
Ⅎ
x
y
∈
A
7
6
19.21bi
⊢
φ
→
Ⅎ
x
y
∈
A
8
df-nfc
⊢
Ⅎ
_
x
B
↔
∀
y
Ⅎ
x
y
∈
B
9
2
8
sylib
⊢
φ
→
∀
y
Ⅎ
x
y
∈
B
10
9
19.21bi
⊢
φ
→
Ⅎ
x
y
∈
B
11
7
10
nfbid
⊢
φ
→
Ⅎ
x
y
∈
A
↔
y
∈
B
12
4
11
nfald
⊢
φ
→
Ⅎ
x
∀
y
y
∈
A
↔
y
∈
B
13
3
12
nfxfrd
⊢
φ
→
Ⅎ
x
A
=
B