Metamath Proof Explorer


Theorem nfeqf

Description: A variable is effectively not free in an equality if it is not either of the involved variables. F/ version of ax-c9 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 6-Oct-2016) Remove dependency on ax-11 . (Revised by Wolf Lammen, 6-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion nfeqf ¬ z z = x ¬ z z = y z x = y

Proof

Step Hyp Ref Expression
1 nfna1 z ¬ z z = x
2 nfna1 z ¬ z z = y
3 1 2 nfan z ¬ z z = x ¬ z z = y
4 equvinva x = y w x = w y = w
5 dveeq1 ¬ z z = x x = w z x = w
6 5 imp ¬ z z = x x = w z x = w
7 dveeq1 ¬ z z = y y = w z y = w
8 7 imp ¬ z z = y y = w z y = w
9 equtr2 x = w y = w x = y
10 9 alanimi z x = w z y = w z x = y
11 6 8 10 syl2an ¬ z z = x x = w ¬ z z = y y = w z x = y
12 11 an4s ¬ z z = x ¬ z z = y x = w y = w z x = y
13 12 ex ¬ z z = x ¬ z z = y x = w y = w z x = y
14 13 exlimdv ¬ z z = x ¬ z z = y w x = w y = w z x = y
15 4 14 syl5 ¬ z z = x ¬ z z = y x = y z x = y
16 3 15 nf5d ¬ z z = x ¬ z z = y z x = y