Metamath Proof Explorer


Theorem nfeqf2

Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Wolf Lammen, 9-Jun-2019) Remove dependency on ax-12 . (Revised by Wolf Lammen, 16-Dec-2022) (New usage is discouraged.)

Ref Expression
Assertion nfeqf2 ¬ x x = y x z = y

Proof

Step Hyp Ref Expression
1 exnal x ¬ x = y ¬ x x = y
2 hbe1 x z = y x x z = y
3 ax13lem2 ¬ x = y x z = y z = y
4 ax13lem1 ¬ x = y z = y x z = y
5 3 4 syldc x z = y ¬ x = y x z = y
6 2 5 eximdh x z = y x ¬ x = y x x z = y
7 hbe1a x x z = y x z = y
8 6 7 syl6com x ¬ x = y x z = y x z = y
9 8 nfd x ¬ x = y x z = y
10 1 9 sylbir ¬ x x = y x z = y