Metamath Proof Explorer


Theorem nff1o

Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004)

Ref Expression
Hypotheses nff1o.1 _ x F
nff1o.2 _ x A
nff1o.3 _ x B
Assertion nff1o x F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 nff1o.1 _ x F
2 nff1o.2 _ x A
3 nff1o.3 _ x B
4 df-f1o F : A 1-1 onto B F : A 1-1 B F : A onto B
5 1 2 3 nff1 x F : A 1-1 B
6 1 2 3 nffo x F : A onto B
7 5 6 nfan x F : A 1-1 B F : A onto B
8 4 7 nfxfr x F : A 1-1 onto B