Metamath Proof Explorer


Theorem nffr

Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nffr.r _ x R
nffr.a _ x A
Assertion nffr x R Fr A

Proof

Step Hyp Ref Expression
1 nffr.r _ x R
2 nffr.a _ x A
3 df-fr R Fr A a a A a b a c a ¬ c R b
4 nfcv _ x a
5 4 2 nfss x a A
6 nfv x a
7 5 6 nfan x a A a
8 nfcv _ x c
9 nfcv _ x b
10 8 1 9 nfbr x c R b
11 10 nfn x ¬ c R b
12 4 11 nfralw x c a ¬ c R b
13 4 12 nfrex x b a c a ¬ c R b
14 7 13 nfim x a A a b a c a ¬ c R b
15 14 nfal x a a A a b a c a ¬ c R b
16 3 15 nfxfr x R Fr A