Metamath Proof Explorer


Theorem nffun

Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004)

Ref Expression
Hypothesis nffun.1 _ x F
Assertion nffun x Fun F

Proof

Step Hyp Ref Expression
1 nffun.1 _ x F
2 df-fun Fun F Rel F F F -1 I
3 1 nfrel x Rel F
4 1 nfcnv _ x F -1
5 1 4 nfco _ x F F -1
6 nfcv _ x I
7 5 6 nfss x F F -1 I
8 3 7 nfan x Rel F F F -1 I
9 2 8 nfxfr x Fun F