Metamath Proof Explorer


Theorem nffvd

Description: Deduction version of bound-variable hypothesis builder nffv . (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nffvd.2 φ _ x F
nffvd.3 φ _ x A
Assertion nffvd φ _ x F A

Proof

Step Hyp Ref Expression
1 nffvd.2 φ _ x F
2 nffvd.3 φ _ x A
3 nfaba1 _ x z | x z F
4 nfaba1 _ x z | x z A
5 3 4 nffv _ x z | x z F z | x z A
6 nfnfc1 x _ x F
7 nfnfc1 x _ x A
8 6 7 nfan x _ x F _ x A
9 abidnf _ x F z | x z F = F
10 9 adantr _ x F _ x A z | x z F = F
11 abidnf _ x A z | x z A = A
12 11 adantl _ x F _ x A z | x z A = A
13 10 12 fveq12d _ x F _ x A z | x z F z | x z A = F A
14 8 13 nfceqdf _ x F _ x A _ x z | x z F z | x z A _ x F A
15 1 2 14 syl2anc φ _ x z | x z F z | x z A _ x F A
16 5 15 mpbii φ _ x F A