Metamath Proof Explorer


Theorem nfi

Description: Deduce that x is not free in ph from the definition. (Contributed by Wolf Lammen, 15-Sep-2021)

Ref Expression
Hypothesis nfi.1 x φ x φ
Assertion nfi x φ

Proof

Step Hyp Ref Expression
1 nfi.1 x φ x φ
2 df-nf x φ x φ x φ
3 1 2 mpbir x φ