Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
nfif
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for a conditional operator.
(Contributed by NM , 16-Feb-2005) (Proof shortened by Andrew Salmon , 26-Jun-2011)
Ref
Expression
Hypotheses
nfif.1
⊢ Ⅎ x φ
nfif.2
⊢ Ⅎ _ x A
nfif.3
⊢ Ⅎ _ x B
Assertion
nfif
⊢ Ⅎ _ x if φ A B
Proof
Step
Hyp
Ref
Expression
1
nfif.1
⊢ Ⅎ x φ
2
nfif.2
⊢ Ⅎ _ x A
3
nfif.3
⊢ Ⅎ _ x B
4
1
a1i
⊢ ⊤ → Ⅎ x φ
5
2
a1i
⊢ ⊤ → Ⅎ _ x A
6
3
a1i
⊢ ⊤ → Ⅎ _ x B
7
4 5 6
nfifd
⊢ ⊤ → Ⅎ _ x if φ A B
8
7
mptru
⊢ Ⅎ _ x if φ A B