Metamath Proof Explorer


Theorem nfii1

Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003)

Ref Expression
Assertion nfii1 _ x x A B

Proof

Step Hyp Ref Expression
1 df-iin x A B = y | x A y B
2 nfra1 x x A y B
3 2 nfab _ x y | x A y B
4 1 3 nfcxfr _ x x A B