Metamath Proof Explorer


Theorem nfiin

Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014) Add disjoint variable condition to avoid ax-13 . See nfiing for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiun.1 _ y A
nfiun.2 _ y B
Assertion nfiin _ y x A B

Proof

Step Hyp Ref Expression
1 nfiun.1 _ y A
2 nfiun.2 _ y B
3 df-iin x A B = z | x A z B
4 2 nfcri y z B
5 1 4 nfralw y x A z B
6 5 nfab _ y z | x A z B
7 3 6 nfcxfr _ y x A B