Metamath Proof Explorer


Theorem nfiing

Description: Bound-variable hypothesis builder for indexed intersection. Usage of this theorem is discouraged because it depends on ax-13 . See nfiin for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Mario Carneiro, 25-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nfiung.1 _ y A
nfiung.2 _ y B
Assertion nfiing _ y x A B

Proof

Step Hyp Ref Expression
1 nfiung.1 _ y A
2 nfiung.2 _ y B
3 df-iin x A B = z | x A z B
4 2 nfcri y z B
5 1 4 nfral y x A z B
6 5 nfabg _ y z | x A z B
7 3 6 nfcxfr _ y x A B