Metamath Proof Explorer


Theorem nfile

Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)

Ref Expression
Assertion nfile A V B W ¬ B Fin A B

Proof

Step Hyp Ref Expression
1 hashxrcl A V A *
2 pnfge A * A +∞
3 1 2 syl A V A +∞
4 3 3ad2ant1 A V B W ¬ B Fin A +∞
5 hashinf B W ¬ B Fin B = +∞
6 5 3adant1 A V B W ¬ B Fin B = +∞
7 4 6 breqtrrd A V B W ¬ B Fin A B