Metamath Proof Explorer


Theorem nfim1

Description: A closed form of nfim . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 2-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)

Ref Expression
Hypotheses nfim1.1 x φ
nfim1.2 φ x ψ
Assertion nfim1 x φ ψ

Proof

Step Hyp Ref Expression
1 nfim1.1 x φ
2 nfim1.2 φ x ψ
3 nf3 x φ x φ x ¬ φ
4 1 3 mpbi x φ x ¬ φ
5 nftht x φ x φ
6 2 sps x φ x ψ
7 5 6 nfimd x φ x φ ψ
8 pm2.21 ¬ φ φ ψ
9 8 alimi x ¬ φ x φ ψ
10 nftht x φ ψ x φ ψ
11 9 10 syl x ¬ φ x φ ψ
12 7 11 jaoi x φ x ¬ φ x φ ψ
13 4 12 ax-mp x φ ψ