Metamath Proof Explorer


Theorem nfimad

Description: Deduction version of bound-variable hypothesis builder nfima . (Contributed by FL, 15-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfimad.2 φ _ x A
nfimad.3 φ _ x B
Assertion nfimad φ _ x A B

Proof

Step Hyp Ref Expression
1 nfimad.2 φ _ x A
2 nfimad.3 φ _ x B
3 nfaba1 _ x z | x z A
4 nfaba1 _ x z | x z B
5 3 4 nfima _ x z | x z A z | x z B
6 nfnfc1 x _ x A
7 nfnfc1 x _ x B
8 6 7 nfan x _ x A _ x B
9 abidnf _ x A z | x z A = A
10 9 imaeq1d _ x A z | x z A z | x z B = A z | x z B
11 abidnf _ x B z | x z B = B
12 11 imaeq2d _ x B A z | x z B = A B
13 10 12 sylan9eq _ x A _ x B z | x z A z | x z B = A B
14 8 13 nfceqdf _ x A _ x B _ x z | x z A z | x z B _ x A B
15 1 2 14 syl2anc φ _ x z | x z A z | x z B _ x A B
16 5 15 mpbii φ _ x A B