Metamath Proof Explorer


Theorem nfimdetndef

Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018)

Ref Expression
Hypothesis nfimdetndef.d D = N maDet R
Assertion nfimdetndef N Fin D =

Proof

Step Hyp Ref Expression
1 nfimdetndef.d D = N maDet R
2 eqid N Mat R = N Mat R
3 eqid Base N Mat R = Base N Mat R
4 eqid Base SymGrp N = Base SymGrp N
5 eqid ℤRHom R = ℤRHom R
6 eqid pmSgn N = pmSgn N
7 eqid R = R
8 eqid mulGrp R = mulGrp R
9 1 2 3 4 5 6 7 8 mdetfval D = m Base N Mat R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x m x
10 df-nel N Fin ¬ N Fin
11 10 biimpi N Fin ¬ N Fin
12 11 intnanrd N Fin ¬ N Fin R V
13 matbas0 ¬ N Fin R V Base N Mat R =
14 12 13 syl N Fin Base N Mat R =
15 14 mpteq1d N Fin m Base N Mat R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x m x = m R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x m x
16 mpt0 m R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x m x =
17 15 16 eqtrdi N Fin m Base N Mat R R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x m x =
18 9 17 syl5eq N Fin D =