Database
BASIC LINEAR ALGEBRA
The determinant
Definition and basic properties
nfimdetndef
Next ⟩
mdetfval1
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfimdetndef
Description:
The determinant is not defined for an infinite matrix.
(Contributed by
AV
, 27-Dec-2018)
Ref
Expression
Hypothesis
nfimdetndef.d
⊢
D
=
N
maDet
R
Assertion
nfimdetndef
⊢
N
∉
Fin
→
D
=
∅
Proof
Step
Hyp
Ref
Expression
1
nfimdetndef.d
⊢
D
=
N
maDet
R
2
eqid
⊢
N
Mat
R
=
N
Mat
R
3
eqid
⊢
Base
N
Mat
R
=
Base
N
Mat
R
4
eqid
⊢
Base
SymGrp
⁡
N
=
Base
SymGrp
⁡
N
5
eqid
⊢
ℤRHom
⁡
R
=
ℤRHom
⁡
R
6
eqid
⊢
pmSgn
⁡
N
=
pmSgn
⁡
N
7
eqid
⊢
⋅
R
=
⋅
R
8
eqid
⊢
mulGrp
R
=
mulGrp
R
9
1
2
3
4
5
6
7
8
mdetfval
⊢
D
=
m
∈
Base
N
Mat
R
⟼
∑
R
p
∈
Base
SymGrp
⁡
N
ℤRHom
⁡
R
∘
pmSgn
⁡
N
⁡
p
⋅
R
∑
mulGrp
R
x
∈
N
p
⁡
x
m
x
10
df-nel
⊢
N
∉
Fin
↔
¬
N
∈
Fin
11
10
biimpi
⊢
N
∉
Fin
→
¬
N
∈
Fin
12
11
intnanrd
⊢
N
∉
Fin
→
¬
N
∈
Fin
∧
R
∈
V
13
matbas0
⊢
¬
N
∈
Fin
∧
R
∈
V
→
Base
N
Mat
R
=
∅
14
12
13
syl
⊢
N
∉
Fin
→
Base
N
Mat
R
=
∅
15
14
mpteq1d
⊢
N
∉
Fin
→
m
∈
Base
N
Mat
R
⟼
∑
R
p
∈
Base
SymGrp
⁡
N
ℤRHom
⁡
R
∘
pmSgn
⁡
N
⁡
p
⋅
R
∑
mulGrp
R
x
∈
N
p
⁡
x
m
x
=
m
∈
∅
⟼
∑
R
p
∈
Base
SymGrp
⁡
N
ℤRHom
⁡
R
∘
pmSgn
⁡
N
⁡
p
⋅
R
∑
mulGrp
R
x
∈
N
p
⁡
x
m
x
16
mpt0
⊢
m
∈
∅
⟼
∑
R
p
∈
Base
SymGrp
⁡
N
ℤRHom
⁡
R
∘
pmSgn
⁡
N
⁡
p
⋅
R
∑
mulGrp
R
x
∈
N
p
⁡
x
m
x
=
∅
17
15
16
eqtrdi
⊢
N
∉
Fin
→
m
∈
Base
N
Mat
R
⟼
∑
R
p
∈
Base
SymGrp
⁡
N
ℤRHom
⁡
R
∘
pmSgn
⁡
N
⁡
p
⋅
R
∑
mulGrp
R
x
∈
N
p
⁡
x
m
x
=
∅
18
9
17
syl5eq
⊢
N
∉
Fin
→
D
=
∅