Metamath Proof Explorer


Theorem nfin

Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nfin.1 _ x A
nfin.2 _ x B
Assertion nfin _ x A B

Proof

Step Hyp Ref Expression
1 nfin.1 _ x A
2 nfin.2 _ x B
3 dfin5 A B = y A | y B
4 2 nfcri x y B
5 4 1 nfrabw _ x y A | y B
6 3 5 nfcxfr _ x A B