Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The intersection of two classes
nfin
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for the intersection of classes.
(Contributed by NM , 15-Sep-2003) (Revised by Mario Carneiro , 14-Oct-2016)
Ref
Expression
Hypotheses
nfin.1
⊢ Ⅎ _ x A
nfin.2
⊢ Ⅎ _ x B
Assertion
nfin
⊢ Ⅎ _ x A ∩ B
Proof
Step
Hyp
Ref
Expression
1
nfin.1
⊢ Ⅎ _ x A
2
nfin.2
⊢ Ⅎ _ x B
3
dfin5
⊢ A ∩ B = y ∈ A | y ∈ B
4
2
nfcri
⊢ Ⅎ x y ∈ B
5
4 1
nfrabw
⊢ Ⅎ _ x y ∈ A | y ∈ B
6
3 5
nfcxfr
⊢ Ⅎ _ x A ∩ B