Metamath Proof Explorer
		
		
		
		Description:  Hypothesis builder for infimum.  (Contributed by AV, 2-Sep-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nfinf.1 |  | 
					
						|  |  | nfinf.2 |  | 
					
						|  |  | nfinf.3 |  | 
				
					|  | Assertion | nfinf |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfinf.1 |  | 
						
							| 2 |  | nfinf.2 |  | 
						
							| 3 |  | nfinf.3 |  | 
						
							| 4 |  | df-inf |  | 
						
							| 5 | 3 | nfcnv |  | 
						
							| 6 | 1 2 5 | nfsup |  | 
						
							| 7 | 4 6 | nfcxfr |  |