Metamath Proof Explorer
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
nfinf.1 |
|
|
|
nfinf.2 |
|
|
|
nfinf.3 |
|
|
Assertion |
nfinf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfinf.1 |
|
2 |
|
nfinf.2 |
|
3 |
|
nfinf.3 |
|
4 |
|
df-inf |
|
5 |
3
|
nfcnv |
|
6 |
1 2 5
|
nfsup |
|
7 |
4 6
|
nfcxfr |
|