Metamath Proof Explorer


Theorem nfinf

Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypotheses nfinf.1 _ x A
nfinf.2 _ x B
nfinf.3 _ x R
Assertion nfinf _ x sup A B R

Proof

Step Hyp Ref Expression
1 nfinf.1 _ x A
2 nfinf.2 _ x B
3 nfinf.3 _ x R
4 df-inf sup A B R = sup A B R -1
5 3 nfcnv _ x R -1
6 1 2 5 nfsup _ x sup A B R -1
7 4 6 nfcxfr _ x sup A B R