Metamath Proof Explorer


Theorem nfint

Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Hypothesis nfint.1 _xA
Assertion nfint _xA

Proof

Step Hyp Ref Expression
1 nfint.1 _xA
2 dfint2 A=y|zAyz
3 nfv xyz
4 1 3 nfralw xzAyz
5 4 nfab _xy|zAyz
6 2 5 nfcxfr _xA