Metamath Proof Explorer


Theorem nfiso

Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses nfiso.1 _ x H
nfiso.2 _ x R
nfiso.3 _ x S
nfiso.4 _ x A
nfiso.5 _ x B
Assertion nfiso x H Isom R , S A B

Proof

Step Hyp Ref Expression
1 nfiso.1 _ x H
2 nfiso.2 _ x R
3 nfiso.3 _ x S
4 nfiso.4 _ x A
5 nfiso.5 _ x B
6 df-isom H Isom R , S A B H : A 1-1 onto B y A z A y R z H y S H z
7 1 4 5 nff1o x H : A 1-1 onto B
8 nfcv _ x y
9 nfcv _ x z
10 8 2 9 nfbr x y R z
11 1 8 nffv _ x H y
12 1 9 nffv _ x H z
13 11 3 12 nfbr x H y S H z
14 10 13 nfbi x y R z H y S H z
15 4 14 nfralw x z A y R z H y S H z
16 4 15 nfralw x y A z A y R z H y S H z
17 7 16 nfan x H : A 1-1 onto B y A z A y R z H y S H z
18 6 17 nfxfr x H Isom R , S A B