Metamath Proof Explorer


Theorem nfitg1

Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion nfitg1 _ x A B dx

Proof

Step Hyp Ref Expression
1 df-itg A B dx = k = 0 3 i k 2 x B i k / z if x A 0 z z 0
2 nfcv _ x 0 3
3 nfcv _ x i k
4 nfcv _ x ×
5 nfcv _ x 2
6 nfmpt1 _ x x B i k / z if x A 0 z z 0
7 5 6 nffv _ x 2 x B i k / z if x A 0 z z 0
8 3 4 7 nfov _ x i k 2 x B i k / z if x A 0 z z 0
9 2 8 nfsum _ x k = 0 3 i k 2 x B i k / z if x A 0 z z 0
10 1 9 nfcxfr _ x A B dx