Metamath Proof Explorer


Theorem nfixp1

Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Assertion nfixp1 _ x x A B

Proof

Step Hyp Ref Expression
1 df-ixp x A B = y | y Fn x | x A x A y x B
2 nfcv _ x y
3 nfab1 _ x x | x A
4 2 3 nffn x y Fn x | x A
5 nfra1 x x A y x B
6 4 5 nfan x y Fn x | x A x A y x B
7 6 nfab _ x y | y Fn x | x A x A y x B
8 1 7 nfcxfr _ x x A B