Metamath Proof Explorer


Theorem nfixpw

Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfixpw.1 _ y A
nfixpw.2 _ y B
Assertion nfixpw _ y x A B

Proof

Step Hyp Ref Expression
1 nfixpw.1 _ y A
2 nfixpw.2 _ y B
3 df-ixp x A B = z | z Fn x | x A x A z x B
4 nfcv _ y z
5 nfcv _ y x
6 5 1 nfel y x A
7 6 nfab _ y x | x A
8 7 a1i _ y x | x A
9 8 mptru _ y x | x A
10 4 9 nffn y z Fn x | x A
11 df-ral x A z x B x x A z x B
12 nftru x
13 6 a1i y x A
14 4 a1i _ y z
15 5 a1i _ y x
16 14 15 nffvd _ y z x
17 2 a1i _ y B
18 16 17 nfeld y z x B
19 13 18 nfimd y x A z x B
20 12 19 nfald y x x A z x B
21 20 mptru y x x A z x B
22 11 21 nfxfr y x A z x B
23 10 22 nfan y z Fn x | x A x A z x B
24 23 nfab _ y z | z Fn x | x A x A z x B
25 3 24 nfcxfr _ y x A B