Metamath Proof Explorer


Theorem nfmodv

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod for a version without disjoint variable conditions but requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by BJ, 28-Jan-2023)

Ref Expression
Hypotheses nfmodv.1 y φ
nfmodv.2 φ x ψ
Assertion nfmodv φ x * y ψ

Proof

Step Hyp Ref Expression
1 nfmodv.1 y φ
2 nfmodv.2 φ x ψ
3 df-mo * y ψ z y ψ y = z
4 nfv z φ
5 nfvd φ x y = z
6 2 5 nfimd φ x ψ y = z
7 1 6 nfald φ x y ψ y = z
8 4 7 nfexd φ x z y ψ y = z
9 3 8 nfxfrd φ x * y ψ