Metamath Proof Explorer


Theorem nfmov

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo for a version without disjoint variable conditions but requiring ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Hypothesis nfmov.1 x φ
Assertion nfmov x * y φ

Proof

Step Hyp Ref Expression
1 nfmov.1 x φ
2 nftru y
3 1 a1i x φ
4 2 3 nfmodv x * y φ
5 4 mptru x * y φ