Metamath Proof Explorer


Theorem nfmpo

Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013)

Ref Expression
Hypotheses nfmpo.1 _zA
nfmpo.2 _zB
nfmpo.3 _zC
Assertion nfmpo _zxA,yBC

Proof

Step Hyp Ref Expression
1 nfmpo.1 _zA
2 nfmpo.2 _zB
3 nfmpo.3 _zC
4 df-mpo xA,yBC=xyw|xAyBw=C
5 1 nfcri zxA
6 2 nfcri zyB
7 5 6 nfan zxAyB
8 3 nfeq2 zw=C
9 7 8 nfan zxAyBw=C
10 9 nfoprab _zxyw|xAyBw=C
11 4 10 nfcxfr _zxA,yBC