Metamath Proof Explorer


Theorem nfnbi

Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 6-Oct-2024)

Ref Expression
Assertion nfnbi x φ x ¬ φ

Proof

Step Hyp Ref Expression
1 exnal x ¬ φ ¬ x φ
2 1 imbi1i x ¬ φ x ¬ φ ¬ x φ x ¬ φ
3 df-nf x ¬ φ x ¬ φ x ¬ φ
4 nf4 x φ ¬ x φ x ¬ φ
5 2 3 4 3bitr4ri x φ x ¬ φ