Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated membership
nfnel
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy , 26-Jun-2011) (Revised by Mario Carneiro , 7-Oct-2016)
Ref
Expression
Hypotheses
nfnel.1
⊢ Ⅎ _ x A
nfnel.2
⊢ Ⅎ _ x B
Assertion
nfnel
⊢ Ⅎ x A ∉ B
Proof
Step
Hyp
Ref
Expression
1
nfnel.1
⊢ Ⅎ _ x A
2
nfnel.2
⊢ Ⅎ _ x B
3
df-nel
⊢ A ∉ B ↔ ¬ A ∈ B
4
1 2
nfel
⊢ Ⅎ x A ∈ B
5
4
nfn
⊢ Ⅎ x ¬ A ∈ B
6
3 5
nfxfr
⊢ Ⅎ x A ∉ B