Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated membership
nfneld
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy , 26-Jun-2011) (Revised by Mario Carneiro , 7-Oct-2016)
Ref
Expression
Hypotheses
nfneld.1
⊢ φ → Ⅎ _ x A
nfneld.2
⊢ φ → Ⅎ _ x B
Assertion
nfneld
⊢ φ → Ⅎ x A ∉ B
Proof
Step
Hyp
Ref
Expression
1
nfneld.1
⊢ φ → Ⅎ _ x A
2
nfneld.2
⊢ φ → Ⅎ _ x B
3
df-nel
⊢ A ∉ B ↔ ¬ A ∈ B
4
1 2
nfeld
⊢ φ → Ⅎ x A ∈ B
5
4
nfnd
⊢ φ → Ⅎ x ¬ A ∈ B
6
3 5
nfxfrd
⊢ φ → Ⅎ x A ∉ B