Metamath Proof Explorer


Theorem nfneld

Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfneld.1 φ _ x A
nfneld.2 φ _ x B
Assertion nfneld φ x A B

Proof

Step Hyp Ref Expression
1 nfneld.1 φ _ x A
2 nfneld.2 φ _ x B
3 df-nel A B ¬ A B
4 1 2 nfeld φ x A B
5 4 nfnd φ x ¬ A B
6 3 5 nfxfrd φ x A B