Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
nfnf
Metamath Proof Explorer
Description: If x is not free in ph , it is not free in F/ y ph .
(Contributed by Mario Carneiro , 11-Aug-2016) (Proof shortened by Wolf
Lammen , 30-Dec-2017)
Ref
Expression
Hypothesis
nfnf.1
⊢ Ⅎ x φ
Assertion
nfnf
⊢ Ⅎ x Ⅎ y φ
Proof
Step
Hyp
Ref
Expression
1
nfnf.1
⊢ Ⅎ x φ
2
df-nf
⊢ Ⅎ y φ ↔ ∃ y φ → ∀ y φ
3
1
nfex
⊢ Ⅎ x ∃ y φ
4
1
nfal
⊢ Ⅎ x ∀ y φ
5
3 4
nfim
⊢ Ⅎ x ∃ y φ → ∀ y φ
6
2 5
nfxfr
⊢ Ⅎ x Ⅎ y φ