Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
nfnfc
Metamath Proof Explorer
Description: Hypothesis builder for F/_ y A . (Contributed by Mario Carneiro , 11-Aug-2016) Remove dependency on ax-13 . (Revised by Wolf Lammen , 10-Dec-2019)
Ref
Expression
Hypothesis
nfnfc.1
⊢ Ⅎ _ x A
Assertion
nfnfc
⊢ Ⅎ x Ⅎ _ y A
Proof
Step
Hyp
Ref
Expression
1
nfnfc.1
⊢ Ⅎ _ x A
2
df-nfc
⊢ Ⅎ _ y A ↔ ∀ z Ⅎ y z ∈ A
3
df-nfc
⊢ Ⅎ _ x A ↔ ∀ z Ⅎ x z ∈ A
4
1 3
mpbi
⊢ ∀ z Ⅎ x z ∈ A
5
4
spi
⊢ Ⅎ x z ∈ A
6
5
nfnf
⊢ Ⅎ x Ⅎ y z ∈ A
7
6
nfal
⊢ Ⅎ x ∀ z Ⅎ y z ∈ A
8
2 7
nfxfr
⊢ Ⅎ x Ⅎ _ y A