Metamath Proof Explorer


Theorem nfofr

Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypothesis nfof.1 _xR
Assertion nfofr _xrR

Proof

Step Hyp Ref Expression
1 nfof.1 _xR
2 df-ofr rR=uv|wdomudomvuwRvw
3 nfcv _xdomudomv
4 nfcv _xuw
5 nfcv _xvw
6 4 1 5 nfbr xuwRvw
7 3 6 nfralw xwdomudomvuwRvw
8 7 nfopab _xuv|wdomudomvuwRvw
9 2 8 nfcxfr _xrR