Metamath Proof Explorer


Theorem nfoi

Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfoi.1 _ x R
nfoi.2 _ x A
Assertion nfoi _ x OrdIso R A

Proof

Step Hyp Ref Expression
1 nfoi.1 _ x R
2 nfoi.2 _ x A
3 df-oi OrdIso R A = if R We A R Se A recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a On | t A z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
4 1 2 nfwe x R We A
5 1 2 nfse x R Se A
6 4 5 nfan x R We A R Se A
7 nfcv _ x V
8 nfcv _ x ran h
9 nfcv _ x j
10 nfcv _ x w
11 9 1 10 nfbr x j R w
12 8 11 nfralw x j ran h j R w
13 12 2 nfrabw _ x w A | j ran h j R w
14 nfcv _ x u
15 nfcv _ x v
16 14 1 15 nfbr x u R v
17 16 nfn x ¬ u R v
18 13 17 nfralw x u w A | j ran h j R w ¬ u R v
19 18 13 nfriota _ x ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v
20 7 19 nfmpt _ x h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v
21 20 nfrecs _ x recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v
22 nfcv _ x a
23 21 22 nfima _ x recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a
24 nfcv _ x z
25 nfcv _ x t
26 24 1 25 nfbr x z R t
27 23 26 nfralw x z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
28 2 27 nfrex x t A z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
29 nfcv _ x On
30 28 29 nfrabw _ x a On | t A z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
31 21 30 nfres _ x recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a On | t A z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
32 nfcv _ x
33 6 31 32 nfif _ x if R We A R Se A recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a On | t A z recs h V ι v w A | j ran h j R w | u w A | j ran h j R w ¬ u R v a z R t
34 3 33 nfcxfr _ x OrdIso R A