Metamath Proof Explorer


Theorem nfop

Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfop.1 _ x A
nfop.2 _ x B
Assertion nfop _ x A B

Proof

Step Hyp Ref Expression
1 nfop.1 _ x A
2 nfop.2 _ x B
3 dfopif A B = if A V B V A A B
4 1 nfel1 x A V
5 2 nfel1 x B V
6 4 5 nfan x A V B V
7 1 nfsn _ x A
8 1 2 nfpr _ x A B
9 7 8 nfpr _ x A A B
10 nfcv _ x
11 6 9 10 nfif _ x if A V B V A A B
12 3 11 nfcxfr _ x A B