Metamath Proof Explorer


Theorem nfopab2

Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion nfopab2 _ y x y | φ

Proof

Step Hyp Ref Expression
1 df-opab x y | φ = z | x y z = x y φ
2 nfe1 y y z = x y φ
3 2 nfex y x y z = x y φ
4 3 nfab _ y z | x y z = x y φ
5 1 4 nfcxfr _ y x y | φ