Metamath Proof Explorer


Theorem nfopabd

Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypotheses nfopabd.1 x φ
nfopabd.2 y φ
nfopabd.4 φ z ψ
Assertion nfopabd φ _ z x y | ψ

Proof

Step Hyp Ref Expression
1 nfopabd.1 x φ
2 nfopabd.2 y φ
3 nfopabd.4 φ z ψ
4 df-opab x y | ψ = w | x y w = x y ψ
5 nfv w φ
6 nfvd φ z w = x y
7 6 3 nfand φ z w = x y ψ
8 2 7 nfexd φ z y w = x y ψ
9 1 8 nfexd φ z x y w = x y ψ
10 5 9 nfabdw φ _ z w | x y w = x y ψ
11 4 10 nfcxfrd φ _ z x y | ψ