Metamath Proof Explorer


Theorem nfopd

Description: Deduction version of bound-variable hypothesis builder nfop . This shows how the deduction version of a not-free theorem such as nfop can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008)

Ref Expression
Hypotheses nfopd.2 φ _ x A
nfopd.3 φ _ x B
Assertion nfopd φ _ x A B

Proof

Step Hyp Ref Expression
1 nfopd.2 φ _ x A
2 nfopd.3 φ _ x B
3 nfaba1 _ x z | x z A
4 nfaba1 _ x z | x z B
5 3 4 nfop _ x z | x z A z | x z B
6 nfnfc1 x _ x A
7 nfnfc1 x _ x B
8 6 7 nfan x _ x A _ x B
9 abidnf _ x A z | x z A = A
10 9 adantr _ x A _ x B z | x z A = A
11 abidnf _ x B z | x z B = B
12 11 adantl _ x A _ x B z | x z B = B
13 10 12 opeq12d _ x A _ x B z | x z A z | x z B = A B
14 8 13 nfceqdf _ x A _ x B _ x z | x z A z | x z B _ x A B
15 1 2 14 syl2anc φ _ x z | x z A z | x z B _ x A B
16 5 15 mpbii φ _ x A B