Metamath Proof Explorer


Theorem nfoprab

Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013)

Ref Expression
Hypothesis nfoprab.1 w φ
Assertion nfoprab _ w x y z | φ

Proof

Step Hyp Ref Expression
1 nfoprab.1 w φ
2 df-oprab x y z | φ = v | x y z v = x y z φ
3 nfv w v = x y z
4 3 1 nfan w v = x y z φ
5 4 nfex w z v = x y z φ
6 5 nfex w y z v = x y z φ
7 6 nfex w x y z v = x y z φ
8 7 nfab _ w v | x y z v = x y z φ
9 2 8 nfcxfr _ w x y z | φ