Metamath Proof Explorer


Theorem nfoprab3

Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013)

Ref Expression
Assertion nfoprab3 _ z x y z | φ

Proof

Step Hyp Ref Expression
1 df-oprab x y z | φ = w | x y z w = x y z φ
2 nfe1 z z w = x y z φ
3 2 nfex z y z w = x y z φ
4 3 nfex z x y z w = x y z φ
5 4 nfab _ z w | x y z w = x y z φ
6 1 5 nfcxfr _ z x y z | φ