Metamath Proof Explorer


Theorem nfovd

Description: Deduction version of bound-variable hypothesis builder nfov . (Contributed by NM, 13-Dec-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses nfovd.2 φ _ x A
nfovd.3 φ _ x F
nfovd.4 φ _ x B
Assertion nfovd φ _ x A F B

Proof

Step Hyp Ref Expression
1 nfovd.2 φ _ x A
2 nfovd.3 φ _ x F
3 nfovd.4 φ _ x B
4 df-ov A F B = F A B
5 1 3 nfopd φ _ x A B
6 2 5 nffvd φ _ x F A B
7 4 6 nfcxfrd φ _ x A F B