Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
nfovd
Metamath Proof Explorer
Description: Deduction version of bound-variable hypothesis builder nfov .
(Contributed by NM , 13-Dec-2005) (Proof shortened by Andrew Salmon , 22-Oct-2011)
Ref
Expression
Hypotheses
nfovd.2
⊢ φ → Ⅎ _ x A
nfovd.3
⊢ φ → Ⅎ _ x F
nfovd.4
⊢ φ → Ⅎ _ x B
Assertion
nfovd
⊢ φ → Ⅎ _ x A F B
Proof
Step
Hyp
Ref
Expression
1
nfovd.2
⊢ φ → Ⅎ _ x A
2
nfovd.3
⊢ φ → Ⅎ _ x F
3
nfovd.4
⊢ φ → Ⅎ _ x B
4
df-ov
⊢ A F B = F ⁡ A B
5
1 3
nfopd
⊢ φ → Ⅎ _ x A B
6
2 5
nffvd
⊢ φ → Ⅎ _ x F ⁡ A B
7
4 6
nfcxfrd
⊢ φ → Ⅎ _ x A F B