Metamath Proof Explorer


Theorem nfpconfp

Description: The set of fixed points of F is the complement of the set of points moved by F . (Contributed by Thierry Arnoux, 17-Nov-2023)

Ref Expression
Assertion nfpconfp F Fn A A dom F I = dom F I

Proof

Step Hyp Ref Expression
1 eldif x A dom F I x A ¬ x dom F I
2 fnelfp F Fn A x A x dom F I F x = x
3 2 pm5.32da F Fn A x A x dom F I x A F x = x
4 inss1 F I F
5 dmss F I F dom F I dom F
6 4 5 ax-mp dom F I dom F
7 fndm F Fn A dom F = A
8 6 7 sseqtrid F Fn A dom F I A
9 8 sseld F Fn A x dom F I x A
10 9 pm4.71rd F Fn A x dom F I x A x dom F I
11 fnelnfp F Fn A x A x dom F I F x x
12 11 notbid F Fn A x A ¬ x dom F I ¬ F x x
13 nne ¬ F x x F x = x
14 12 13 bitrdi F Fn A x A ¬ x dom F I F x = x
15 14 pm5.32da F Fn A x A ¬ x dom F I x A F x = x
16 3 10 15 3bitr4rd F Fn A x A ¬ x dom F I x dom F I
17 1 16 syl5bb F Fn A x A dom F I x dom F I
18 17 eqrdv F Fn A A dom F I = dom F I