Metamath Proof Explorer


Theorem nfpr

Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfpr.1 _ x A
nfpr.2 _ x B
Assertion nfpr _ x A B

Proof

Step Hyp Ref Expression
1 nfpr.1 _ x A
2 nfpr.2 _ x B
3 dfpr2 A B = y | y = A y = B
4 1 nfeq2 x y = A
5 2 nfeq2 x y = B
6 4 5 nfor x y = A y = B
7 6 nfab _ x y | y = A y = B
8 3 7 nfcxfr _ x A B