Metamath Proof Explorer


Theorem nfpred

Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018)

Ref Expression
Hypotheses nfpred.1 _ x R
nfpred.2 _ x A
nfpred.3 _ x X
Assertion nfpred _ x Pred R A X

Proof

Step Hyp Ref Expression
1 nfpred.1 _ x R
2 nfpred.2 _ x A
3 nfpred.3 _ x X
4 df-pred Pred R A X = A R -1 X
5 1 nfcnv _ x R -1
6 3 nfsn _ x X
7 5 6 nfima _ x R -1 X
8 2 7 nfin _ x A R -1 X
9 4 8 nfcxfr _ x Pred R A X