Metamath Proof Explorer


Theorem nfpw

Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis nfpw.1 _ x A
Assertion nfpw _ x 𝒫 A

Proof

Step Hyp Ref Expression
1 nfpw.1 _ x A
2 df-pw 𝒫 A = y | y A
3 nfcv _ x y
4 3 1 nfss x y A
5 4 nfab _ x y | y A
6 2 5 nfcxfr _ x 𝒫 A