Metamath Proof Explorer


Theorem nfra2w

Description: Similar to Lemma 24 of Monk2 p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD . Version of nfra2 with a disjoint variable condition not requiring ax-13 . (Contributed by Alan Sare, 31-Dec-2011) (Revised by Gino Giotto, 24-Sep-2024) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Assertion nfra2w y x A y B φ

Proof

Step Hyp Ref Expression
1 r2al x A y B φ x y x A y B φ
2 alcom x y x A y B φ y x x A y B φ
3 1 2 bitri x A y B φ y x x A y B φ
4 nfa1 y y x x A y B φ
5 3 4 nfxfr y x A y B φ