Metamath Proof Explorer


Theorem nfrab

Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrabw when possible. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrab.1 x φ
nfrab.2 _ x A
Assertion nfrab _ x y A | φ

Proof

Step Hyp Ref Expression
1 nfrab.1 x φ
2 nfrab.2 _ x A
3 df-rab y A | φ = y | y A φ
4 nftru y
5 2 nfcri x z A
6 eleq1w z = y z A y A
7 5 6 dvelimnf ¬ x x = y x y A
8 1 a1i ¬ x x = y x φ
9 7 8 nfand ¬ x x = y x y A φ
10 9 adantl ¬ x x = y x y A φ
11 4 10 nfabd2 _ x y | y A φ
12 11 mptru _ x y | y A φ
13 3 12 nfcxfr _ x y A | φ