Metamath Proof Explorer


Theorem nfrald

Description: Deduction version of nfral . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfraldw when possible. (Contributed by NM, 15-Feb-2013) (Revised by Mario Carneiro, 7-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrald.1 y φ
nfrald.2 φ _ x A
nfrald.3 φ x ψ
Assertion nfrald φ x y A ψ

Proof

Step Hyp Ref Expression
1 nfrald.1 y φ
2 nfrald.2 φ _ x A
3 nfrald.3 φ x ψ
4 df-ral y A ψ y y A ψ
5 nfcvf ¬ x x = y _ x y
6 5 adantl φ ¬ x x = y _ x y
7 2 adantr φ ¬ x x = y _ x A
8 6 7 nfeld φ ¬ x x = y x y A
9 3 adantr φ ¬ x x = y x ψ
10 8 9 nfimd φ ¬ x x = y x y A ψ
11 1 10 nfald2 φ x y y A ψ
12 4 11 nfxfrd φ x y A ψ