Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
nfraldw
Metamath Proof Explorer
Description: Deduction version of nfralw . Version of nfrald with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 15-Feb-2013) (Revised by Gino Giotto , 24-Sep-2024)
Ref
Expression
Hypotheses
nfraldw.1
⊢ Ⅎ y φ
nfraldw.2
⊢ φ → Ⅎ _ x A
nfraldw.3
⊢ φ → Ⅎ x ψ
Assertion
nfraldw
⊢ φ → Ⅎ x ∀ y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
nfraldw.1
⊢ Ⅎ y φ
2
nfraldw.2
⊢ φ → Ⅎ _ x A
3
nfraldw.3
⊢ φ → Ⅎ x ψ
4
df-ral
⊢ ∀ y ∈ A ψ ↔ ∀ y y ∈ A → ψ
5
2
nfcrd
⊢ φ → Ⅎ x y ∈ A
6
5 3
nfimd
⊢ φ → Ⅎ x y ∈ A → ψ
7
1 6
nfald
⊢ φ → Ⅎ x ∀ y y ∈ A → ψ
8
4 7
nfxfrd
⊢ φ → Ⅎ x ∀ y ∈ A ψ