Metamath Proof Explorer


Theorem nfraldw

Description: Deduction version of nfralw . Version of nfrald with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 24-Sep-2024)

Ref Expression
Hypotheses nfraldw.1 y φ
nfraldw.2 φ _ x A
nfraldw.3 φ x ψ
Assertion nfraldw φ x y A ψ

Proof

Step Hyp Ref Expression
1 nfraldw.1 y φ
2 nfraldw.2 φ _ x A
3 nfraldw.3 φ x ψ
4 df-ral y A ψ y y A ψ
5 2 nfcrd φ x y A
6 5 3 nfimd φ x y A ψ
7 1 6 nfald φ x y y A ψ
8 4 7 nfxfrd φ x y A ψ