Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
nfraldwOLD
Metamath Proof Explorer
Description: Obsolete version of nfraldw as of 24-Sep-2024. (Contributed by NM , 15-Feb-2013) (Revised by Gino Giotto , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfraldwOLD.1
⊢ Ⅎ y φ
nfraldwOLD.2
⊢ φ → Ⅎ _ x A
nfraldwOLD.3
⊢ φ → Ⅎ x ψ
Assertion
nfraldwOLD
⊢ φ → Ⅎ x ∀ y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
nfraldwOLD.1
⊢ Ⅎ y φ
2
nfraldwOLD.2
⊢ φ → Ⅎ _ x A
3
nfraldwOLD.3
⊢ φ → Ⅎ x ψ
4
df-ral
⊢ ∀ y ∈ A ψ ↔ ∀ y y ∈ A → ψ
5
nfcvd
⊢ φ → Ⅎ _ x y
6
5 2
nfeld
⊢ φ → Ⅎ x y ∈ A
7
6 3
nfimd
⊢ φ → Ⅎ x y ∈ A → ψ
8
1 7
nfald
⊢ φ → Ⅎ x ∀ y y ∈ A → ψ
9
4 8
nfxfrd
⊢ φ → Ⅎ x ∀ y ∈ A ψ